19,740 research outputs found

    Triaxial projected shell model approach

    Get PDF
    The projected shell model analysis is carried out using the triaxial Nilsson+BCS basis. It is demonstrated that, for an accurate description of the moments of inertia in the transitional region, it is necessary to take the triaxiality into account and perform the three-dimensional angular-momentum projection from the triaxial Nilsson+BCS intrinsic wavefunction.Comment: 9 pages, 2 figure

    Varied Signature Splitting Phenomena in Odd Proton Nuclei

    Full text link
    Varied signature splitting phenomena in odd proton rare earth nuclei are investigated. Signature splitting as functions of KK and jj in the angular momentum projection theory is explicitly shown and compared with those of the particle rotor model. The observed deviations from these rules are due to the band mixings. The recently measured 169^{169}Ta high spin data are taken as a typical example where fruitful information about signature effects can be extracted. Six bands, two of which have not yet been observed, were calculated and discussed in detail in this paper. The experimentally unknown band head energies are given

    Ensemble learning of linear perceptron; Online learning theory

    Full text link
    Within the framework of on-line learning, we study the generalization error of an ensemble learning machine learning from a linear teacher perceptron. The generalization error achieved by an ensemble of linear perceptrons having homogeneous or inhomogeneous initial weight vectors is precisely calculated at the thermodynamic limit of a large number of input elements and shows rich behavior. Our main findings are as follows. For learning with homogeneous initial weight vectors, the generalization error using an infinite number of linear student perceptrons is equal to only half that of a single linear perceptron, and converges with that of the infinite case with O(1/K) for a finite number of K linear perceptrons. For learning with inhomogeneous initial weight vectors, it is advantageous to use an approach of weighted averaging over the output of the linear perceptrons, and we show the conditions under which the optimal weights are constant during the learning process. The optimal weights depend on only correlation of the initial weight vectors.Comment: 14 pages, 3 figures, submitted to Physical Review

    Random graph asymptotics on high-dimensional tori. II. Volume, diameter and mixing time

    Get PDF
    For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (2007). This improvement finally settles a conjecture by Aizenman (1997) about the role of boundary conditions in critical high-dimensional percolation, and it is a key step in deriving further properties of critical percolation on the torus. Indeed, a criterion of Nachmias and Peres (2008) implies appropriate bounds on diameter and mixing time of the largest clusters. We further prove that the volume bounds apply also to any finite number of the largest clusters. The main conclusion of the paper is that the behavior of critical percolation on the high-dimensional torus is the same as for critical Erdos-Renyi random graphs. In this updated version we incorporate an erratum to be published in a forthcoming issue of Probab. Theory Relat. Fields. This results in a modification of Theorem 1.2 as well as Proposition 3.1.Comment: 16 pages. v4 incorporates an erratum to be published in a forthcoming issue of Probab. Theory Relat. Field

    Optimization of the Asymptotic Property of Mutual Learning Involving an Integration Mechanism of Ensemble Learning

    Full text link
    We propose an optimization method of mutual learning which converges into the identical state of optimum ensemble learning within the framework of on-line learning, and have analyzed its asymptotic property through the statistical mechanics method.The proposed model consists of two learning steps: two students independently learn from a teacher, and then the students learn from each other through the mutual learning. In mutual learning, students learn from each other and the generalization error is improved even if the teacher has not taken part in the mutual learning. However, in the case of different initial overlaps(direction cosine) between teacher and students, a student with a larger initial overlap tends to have a larger generalization error than that of before the mutual learning. To overcome this problem, our proposed optimization method of mutual learning optimizes the step sizes of two students to minimize the asymptotic property of the generalization error. Consequently, the optimized mutual learning converges to a generalization error identical to that of the optimal ensemble learning. In addition, we show the relationship between the optimum step size of the mutual learning and the integration mechanism of the ensemble learning.Comment: 13 pages, 3 figures, submitted to Journal of Physical Society of Japa

    On the Backbending Mechanism of 48^{48}Cr

    Full text link
    The mechanism of backbending in 48^{48}Cr is investigated in terms of the Projected Shell Model and the Generator Coordinate Method. It is shown that both methods are reasonable shell model truncation schemes. These two quite different quantum mechanical approaches lead to a similar conclusion that the backbending is due to a band crossing involving an excited band which is built on simultaneously broken neutron and proton pairs in the ``intruder'' subshell f7/2f_{7/2}. It is pointed out that this type of band crossing is usually known to cause the second backbending in rare-earth nuclei.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Magnetic characterization and switching of Co nano-rings in current-perpendicular-to-plane configuration

    Full text link
    We fabricated Co nano-rings incorporated in the vertical pseudo-spin-valve nanopillar structures with deep submicron lateral sizes. It is shown that the current-perpendicular-to-plane giant magnetoresistance can be used to characterize a very small magnetic nano-ring effectively. Both the onion state and the flux-closure vortex state are observed. The Co nano-rings can be switched between the onion states as well as between onion and vortex states not only by the external field but also by the perpendicularly injected dc current

    Theoretical study of the (3x2) reconstruction of beta-SiC(001)

    Full text link
    By means of ab initio molecular dynamics and band structure calculations, as well as using calculated STM images, we have singled out one structural model for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC, amongst several proposed in the literature. This is an alternate dimer-row model, with an excess Si coverage of 1/3, yielding STM images in good accord with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com
    • …
    corecore